1. Motivation 3. Method

Disjoint input and output space:

* Input 3D scan: surface of the object
* Qutput anchor space:
center of the bounding box

Sparse convolution / PointNet:
Learn only on the surface of the object

= Output space Is unreachable!
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1. Make predictions at the surface of the
object (Point R-CNN, AVOD, ...)
= Nontrivial to decide which part of the
surface Is responsible for the prediction

2. Convert sparse tensor to dense tensor
(3DMV) = Give up efficiency In sparsity
3. For every point, predict relative center of

the instance (VoteNet)
= Requires center aggregation

Ours: Object centers are close to the object
surface. Can we generate object centers
efficiently?

Hierarchical Sparse Tensor Encoder: Efficiently
encodes 3D scene using Sparse Convolution.
Generative Sparse Tensor Decoder:

Generates and prunes new coordinates to support
anchor box centers
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Generative Sparse Detection Network

Sparse Transposed Convolution
» Quter-product of the convolution kernel shape on

the input coordinates

» Generates surrounding coordinates of the input
coordinates (expands support)
parsity Pruning

* For each generated point, predict whether to
prune the coordinate

* Prune coordinates that are not bounding box
centers
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4. Experiments

ScanNet
Runtime per input size Runtime per floor area
* Outperforms previous state-of- | | W —
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S3DIS

* Qutperforms baselme method

(13984m?3, 53 room) of S3DIS
dataset in a single fully
convolutional feed-forward pass, L s e B
only using 5G of GPU memory to_ e Il "
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detect 573 instances of objects. &
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* Our model trained on single room
of ScanNet dataset generanlizes
to multi-story buildings without
any ad-hoc pre-processing or
post-processing.




