

16TH EUROPEAN CONFERENCE ON COMPUTER VISION

WWW.ECCV2020.EU

Generative Sparse Detection Networks for 3D Single-shot Object Detection

JunYoung Gwak, Christopher Choy, Silvio Savarese

Disjoint input and output space:

- Input 3D scan: surface of the object
- Output anchor space: center of the bounding box

Sparse convolution / PointNet: Learn only on the surface of the object

⇒ Output space is unreachable!

Possible solutions? (previous works)

- Ignore this problem and make predictions at the surface of the object
 - Nontrivial to decide which part of the surface is responsible for the prediction

Possible solutions? (previous works)

- Ignore this problem and make predictions at the surface of the object
 - Nontrivial to decide which part of the surface is responsible for the prediction
- Convert sparse tensor to dense tensor
 - Give up efficiency in sparsity

Possible solutions? (previous works)

- Ignore this problem and make predictions at the surface of the object
 - Nontrivial to decide which part of the surface is responsible for the prediction
- Convert sparse tensor to dense tensor
 - Give up efficiency in sparsity
- For every point, predict relative center of the instance
 - Requires center aggregation (clustering), inefficient

Key observation:

Object centers are close to the object surface

Can we generate object centers efficiently?

Method Overview

- Generates hierarchical sparse tensor features with sparse 3D ResNet
- Analogous to ResNet encoders commonly used in of 2D detectors

Generative Sparse Detection Network

- Generates hierarchical sparse tensor features with sparse 3D ResNet
- Analogous to ResNet encoders commonly used in of 2D detectors

Generative Sparse Detection Network

t BBox Pred

Generative Sparse Detection Networks for 3D Single-shot Object Detection

- Generates hierarchical sparse tensor features with sparse 3D ResNet
- Analogous to ResNet encoders commonly used in of 2D detectors

Generative Sparse Detection Network

BBox Pred

Generative Sparse Detection Networks for 3D Single-shot Object Detection

- Generates hierarchical sparse tensor features with sparse 3D ResNet
- Analogous to ResNet encoders commonly used in of 2D detectors

Generative Sparse Detection Network

- Generates hierarchical sparse tensor features with sparse 3D ResNet
- Analogous to ResNet encoders commonly used in of 2D detectors

Generative Sparse Detection Network

Generative Sparse Tensor Decoder

Transposed Convolution + Sparsity Pruning

Generative Sparse Detection Network Generative Sparse Detection Networks for 3D Single-shot Object Detection

Transposed Convolution + Sparsity Pruning

- Sparse Transposed Convolution
 - Outer-product of the convolution kernel shape on the input coordinates
 - Generates surrounding coordinates of the input coordinates (expands support)
- Sparsity Pruning

Transposed Convolution + Sparsity Pruning

- Sparse Transposed Convolution
- Sparsity Pruning
 - For each generated point, predict whether to prune the coordinate
 - Prune coordinates that are not bounding box centers

Bounding box prediction

Bounding box prediction

- For every point that are not pruned, predict
 - Anchor classification
 - Bounding box regression
 - Semantic classification
- Hierarchical multi-scale prediction on pyramid network

Advantages of Our Method

Full 3D search space

• Search for object center up to ±1.6m of any observable surface

Fully sparse: Minimal runtime and memory footprint

- Sparse Convolution Encoder
- Conv Transpose and Pruning to only generate anchor centers

Fully-convolutional

- Simple architecture
- No clustering, no crop and merge, just convolutions

- Sparsity Prediction: Balanced Cross Entropy
- Anchor Prediction: Balanced Cross Entropy
- Semantic Prediction: Cross Entropy
- Bounding Box Regression: Huber Loss

- Sparsity Prediction: Balanced Cross Entropy
- Anchor Prediction: Balanced Cross Entropy
- Semantic Prediction: Cross Entropy
- Bounding Box Regression: Huber Loss

Balanced Cross Entropy

$$L_{\mathrm{b}}(\hat{\mathbf{y}}, \mathbf{y}) = -\frac{1}{2|\mathcal{P}|} \sum_{i \in \mathcal{P}} \log(P(\hat{\mathbf{y}}_i)) - \frac{1}{2|\mathcal{N}|} \sum_{i \in \mathcal{N}} \log(1 - P(\hat{\mathbf{y}}_i))$$

- Sparsity Prediction: Balanced Cross Entropy
- Anchor Prediction: Balanced Cross Entropy
- Semantic Prediction: Cross Entropy
- Bounding Box Regression: Huber Loss

Balanced Cross Entropy

Overcome heavy label bias by equally penalizing positive and negative samples

$$L_{\mathrm{b}}(\hat{\mathbf{y}}, \mathbf{y}) = -\frac{1}{2|\mathcal{P}|} \sum_{i \in \mathcal{P}} \log(P(\hat{\mathbf{y}}_i)) - \frac{1}{2|\mathcal{N}|} \sum_{i \in \mathcal{N}} \log(1 - P(\hat{\mathbf{y}}_i))$$

Generative Sparse Detection Networks for 3D Single-shot Object Detection

Bounding box parameters

- Outperforms previous state-of-the-art by 4.2 mAP@0.25
 - While being a single-shot detection

Method	Single Shot	mAP@0.25	mAP@0.5
DSS [28, 13]	×	15.2	6.8
MRCNN 2D-3D [11, 13]	×	17.3	10.5
F-PointNet [25]	×	19.8	10.8
GSPN [37, 24]	×	30.6	17.7
3D-SIS [13]	 ✓ 	25.4	14.6
3D-SIS [13] + 5 views	 ✓ 	40.2	22.5
VoteNet [24]	×	58.6	33.5
GSDN (Ours)	✓	62.8	34.8

- Outperforms previous state-of-the-art by 4.2 mAP@0.25
 - While being a single-shot detection
- While being x3.7 faster
 - runtime linear to # of points
 - runtime sublinear to floor area
 - $\circ \Rightarrow$ free from curse of dimensionality!!

- Outperforms previous state-of-the-art by 4.2 mAP@0.25
 - While being a single-shot detection
- While being x3.7 faster
 - runtime linear to # of points
 - runtime sublinear to floor area
 - \Rightarrow free from curse of dimensionality!!
- Minimal memory footprint
 - **x6** efficient to dense counterpart

- Outperforms previous state-of-the-art by 4.2 mAP@0.25
 - While being a single-shot detection
- While being x3.7 faster
 - runtime linear to # of points
 - runtime sublinear to floor area
 - $\circ \Rightarrow$ free from curse of dimensionality!!
- Minimal memory footprint
 - **x6** efficient to dense counterpart
- Maintains constant input density
 - Consistent information for scalability

Comparison with previous SOTA - S3DIS

- Achieves state-of-the-art result
- Our method doesn't require crop-and-stitch post-processing unlike Yang et al.

1	IoU Thres.	Metric	Method	$\ $ table	chair	sofa	bookcase	board	avg
	0.25	AP	Yang et al. [36] [*] GSDN (ours)	27.33 73.69	53.41 98.11	$9.09 \\ 20.78$	$14.76 \\ 33.38$	$29.17 \\ 12.91$	$26.75 \\ 47.77$
		Recall	Yang et al. [36] [*] GSDN (ours)	$\ 40.91\85.71$	68.22 98.84	$9.09 \\ 36.36$	$29.03 \\ 61.57$	$\begin{array}{c} 50.00\\ 26.19\end{array}$	$39.45 \\ 61.74$
	0.5	AP	Yang et al. [36] [*] GSDN (ours)	$\left\ \begin{array}{c} 4.02 \\ 36.57 \end{array} \right\ $	$17.36 \\ 75.29$	$\begin{array}{c} 0.0\\ 6.06\end{array}$	$2.60 \\ 6.46$	$13.57 \\ 1.19$	$7.51 \\ 25.11$
		Recall	Yang et al. [36] [*] GSDN (ours)	$\left\ \begin{array}{c} 16.23 \\ 50.00 \end{array} \right\ $	$38.37 \\ 82.56$	$\begin{array}{c} 0.0\\ 18.18\end{array}$	$\begin{array}{c} 12.44 \\ 18.52 \end{array}$	$33.33 \\ 2.38$	$20.08 \\ 34.33$

Comparison with previous SOTA - S3DIS

Ablation study

Train without sparsity pruning

→ Fails to train due to out of memory error

Train without Generative Sparse Tensor Decoder

backbone model mAP@0.25 mAP@0.5							
No decoder	52.1	24.6					
Ours	57.2	29.7					

Scalability and generalization - S3DIS

Train on small rooms, test on the the entire building 5 of S3DIS

- 78M points, 13984m³ volume, and 53 rooms
- Single fully-convolutional network feed-forward
- Takes 20 seconds including data pre-processing and post-processing
- Use 5G GPU memory to detect 573 instances of 3D objects

Scalability and generalization - S3DIS

How does our method achieve high scalability and generalization capacity?

Consistent information regardless of the size of input:

- Fully-convolutional: translation invariant
- Consistent density of input: voxels. no fixed-sized random subsampling

Minimal runtime and memory footprint

- Fully sparse
 - Sparse encoder: sparse convolution
 - Sparse decoder: pruning to prevent cubic growth of generated coordinates

Conclusion

We propose Generative Sparse Detection Networks

- Efficiently processes large-scale 3D scene using Sparse Convolution
- Generates and prunes new coordinates to support anchor box centers

Which achieves

- Outperforms previous state-of-the-art by 4.2 mAP@0.25
- While being **x3.7 faster** (and runtime grows **sublinear** to the volume)
- With **minimal memory footprint** (**x6** efficient than dense counterpart)
- Processes unprecedently large scene in a single network feed-forward

Thank you!

Generative Sparse Detection Networks for 3D Single-shot Object Detection

Collaborators

JunYoung Gwak Stanford University

Chris Choy NVIDIA

Silvio Savarese Stanford University