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Key Challenge of 3D Object Detection

Disjoint input and output space:

● Input 3D scan: surface of the object
● Output anchor space:

center of the bounding box

Sparse convolution / PointNet:
Learn only on the surface of the object

⇒ Output space is unreachable!
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Key Challenge of 3D Object Detection

Possible solutions? (previous works)

● Ignore this problem and make predictions 
at the surface of the object
○ Nontrivial to decide which part of the 

surface is responsible for the prediction
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Possible solutions? (previous works)
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● Convert sparse tensor to dense tensor
○ Give up efficiency in sparsity
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Key Challenge of 3D Object Detection

Possible solutions? (previous works)

● Ignore this problem and make predictions 
at the surface of the object
○ Nontrivial to decide which part of the 

surface is responsible for the prediction

● Convert sparse tensor to dense tensor
○ Give up efficiency in sparsity

● For every point, predict relative center of 
the instance
○ Requires center aggregation (clustering), 

inefficient
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Key Challenge of 3D Object Detection

Key observation:

Object centers are close to the object 
surface

Can we generate object centers efficiently?
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Method Overview
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Hierarchical Sparse Tensor Encoder
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Hierarchical Sparse Tensor Encoder

● Generates hierarchical sparse tensor 
features with sparse 3D ResNet

● Analogous to ResNet encoders 
commonly used in of 2D detectors
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Generative Sparse Tensor Decoder
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Transposed Convolution + Sparsity Pruning
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Transposed Convolution + Sparsity Pruning

● Sparse Transposed Convolution
○ Outer-product of the convolution kernel shape on 

the input coordinates
○ Generates surrounding coordinates of the input 

coordinates (expands support)
● Sparsity Pruning
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Transposed Convolution + Sparsity Pruning

● Sparse Transposed Convolution
● Sparsity Pruning

○ For each generated point, predict whether to 
prune the coordinate

○ Prune coordinates that are not bounding box 
centers
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Bounding box prediction
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Bounding box prediction
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● For every point that are not pruned, 
predict
○ Anchor classification
○ Bounding box regression
○ Semantic classification

● Hierarchical multi-scale prediction on 
pyramid network
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Full 3D search space

● Search for object center up to ±1.6m of any observable surface

Fully sparse: Minimal runtime and memory footprint

● Sparse Convolution Encoder
● Conv Transpose and Pruning to only generate anchor centers

Fully-convolutional

● Simple architecture
● No clustering, no crop and merge, just convolutions
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Advantages of Our Method
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● Sparsity Prediction: Balanced Cross Entropy
● Anchor Prediction: Balanced Cross Entropy
● Semantic Prediction: Cross Entropy
● Bounding Box Regression: Huber Loss
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Losses
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● Sparsity Prediction: Balanced Cross Entropy
● Anchor Prediction: Balanced Cross Entropy
● Semantic Prediction: Cross Entropy
● Bounding Box Regression: Huber Loss

Balanced Cross Entropy

Overcome heavy label bias by equally penalizing positive and negative 
samples
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● Sparsity Prediction: Balanced Cross Entropy
● Anchor Prediction: Balanced Cross Entropy
● Semantic Prediction: Cross Entropy
● Bounding Box Regression: Huber Loss

Balanced Cross Entropy

Overcome heavy label bias by equally penalizing positive and negative 
samples
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Losses

Bounding box parameters
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● Outperforms previous state-of-the-art 
by 4.2 mAP@0.25
○ While being a single-shot detection
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Comparison with previous SOTA - ScanNet

Generative Sparse Detection Networks for 3D Single-shot Object Detection



● Outperforms previous state-of-the-art 
by 4.2 mAP@0.25
○ While being a single-shot detection

● While being x3.7 faster
○ runtime linear to # of points
○ runtime sublinear to floor area
○ ⇒ free from curse of dimensionality!!
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● Outperforms previous state-of-the-art 
by 4.2 mAP@0.25
○ While being a single-shot detection

● While being x3.7 faster
○ runtime linear to # of points
○ runtime sublinear to floor area
○ ⇒ free from curse of dimensionality!!

● Minimal memory footprint
○ x6 efficient to dense counterpart

● Maintains constant input density
○ Consistent information for scalability
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Comparison with previous SOTA - ScanNet
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Comparison with previous SOTA - ScanNet
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Comparison with previous SOTA - S3DIS
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● Achieves state-of-the-art result
● Our method doesn’t require crop-and-stitch post-processing 

unlike Yang et al.
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Comparison with previous SOTA - S3DIS

Generative Sparse Detection Networks for 3D Single-shot Object Detection



32

Ablation study
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Train without sparsity pruning

➔ Fails to train due to out of memory error

Train without Generative Sparse Tensor Decoder

➔



Train on small rooms, test on the the entire building 5 of S3DIS

● 78M points, 13984m3 volume, and 53 rooms
● Single fully-convolutional network feed-forward
● Takes 20 seconds including data pre-processing and post-processing
● Use 5G GPU memory to detect 573 instances of 3D objects
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Scalability and generalization - S3DIS
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How does our method achieve high scalability and generalization capacity?

Consistent information regardless of the size of input:

● Fully-convolutional: translation invariant
● Consistent density of input: voxels. no fixed-sized random subsampling

Minimal runtime and memory footprint

● Fully sparse
○ Sparse encoder: sparse convolution
○ Sparse decoder: pruning to prevent cubic growth of generated coordinates
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Scalability and generalization - S3DIS
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We propose Generative Sparse Detection Networks

● Efficiently processes large-scale 3D scene using Sparse Convolution
● Generates and prunes new coordinates to support anchor box centers

Which achieves

● Outperforms previous state-of-the-art by 4.2 mAP@0.25
● While being x3.7 faster (and runtime grows sublinear to the volume)
● With minimal memory footprint (x6 efficient than dense counterpart)
● Processes unprecedently large scene in a single network feed-forward
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Conclusion
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